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Joint Statistics for Two Correlated Weibull Variates
Michel Daoud Yacoub, Daniel Benevides da Costa, Ugo Silva Dias, and Gustavo Fraidenraich

Abstract—This paper derives closed-form formulas for the joint
statistics of two correlated Weibull variates. In particular, the joint
probability density function, the general joint moments, and the
general correlation coefficient are obtained in terms of well-known
fading physical parameters.

Index Terms—Correlated Weibull, Weibull correlation coeffi-
cient, Weibull distribution.

I. INTRODUCTION

THE Weibull distribution is an empirical distribution, which
was originally used as a statistical model for reliability

analysis. Its simplicity and flexibility soon paved its way to wire-
less communications applications, as widely reported in the lit-
erature (e.g., [1]–[6]). Of course, due to its origin, no physical
model concerning the fading environment has been associated
with it. In [7], a physical model for a generalized fading dis-
tribution was proposed, in which Weibull appears as a special
case. In essence, as proposed in [7], the fading model for the
Weibull distribution considers a signal composed of a cluster
of multipath waves propagating in a nonhomogeneous environ-
ment. Within this cluster, the phases of the scattered waves are
random. The resulting envelope is obtained as a nonlinear func-
tion of the modulus of the sum of the multipath components.
Such a nonlinearity is manifested in terms of a power param-
eter, so that the resulting signal intensity is obtained not simply
as the modulus of the sum of the multipath components, but
as this modulus to a certain given exponent. The author of [7]
does not try to explain why or how such a nonlinearity occurs
or even if it indeed occurs. What the author conjectures about is
that the resulting effect on the received signal propagated in a
certain medium is manifested in terms of a nonlinearity. Besides
the phenomenon related to the propagation medium, such a non-
linearity might also account for the practical limitations of the
detection process at the receiver. The aim of the present paper
is to derive closed-form formulas for the joint statistics of two
correlated Weibull variates. In particular, the joint probability
density function (pdf), the general joint moments, and the gen-
eral correlation coefficient are obtained in terms of well-known
fading physical parameters.

Manuscript received November 8, 2004; revised January 10, 2005. This work
was supported in part by CAPES.

The authors are with the Department of Communications, School of
Electrical and Computer Engineering, State University of Campinas,
DECOM/FEEC/UNICAMP, C.P. 6101, 13083-852 Campinas, SP, Brazil
(e-mail: michel@decom.fee.unicamp.br; daniel@decom.fee.unicamp.br;
ugo@decom.fee.unicamp.br; gf@decom.fee.unicamp.br).

Digital Object Identifier 10.1109/LAWP.2005.845910

II. RELATED WORKS

In [8], using a result of [9], a Weibull bivariate distribution is
used to investigate the performance of dual selection diversity
in correlated fading channels. In [9], the bivariate distribution is
derived as a mixture of two Weibull marginals. The combination
of the marginals is carried out in terms of a “dependence param-
eter” , which is not the correlation coefficient of two corre-
lated Weibull variates.1 The mathematical relation
was found by using the statistical definition of correlation co-
efficient. The resulting equation was such that the dependence
parameter could not be expressed directly in terms of the corre-
lation coefficient, i.e., could not be found explicitly.
Therefore, the bivariate distribution, which is written in terms of
the dependence parameter , appears only indirectly in terms of
the correlation coefficient of its variates. Both and are ba-
sically nondimensional variables ranging from zero to one, and
they bear no relation to physical parameters affecting the fading
phenomena. One evidence substantiated by the authors of [8]
was that, in spite of the fact that Weibull includes Rayleigh as a
special case, the resulting joint Weibull pdf of [8] does not com-
prise the joint Rayleigh pdf [10]–[13] as a particular case. In this
paper, a simple joint Weibull pdf is obtained in which the cor-
relation coefficient appears explicitly in the resulting equation.
Such a correlation coefficient is obtained in terms of well-known
physical fading parameters. Therefore, all of the joint statistics
can be written as functions of these fading parameters. In ad-
dition, the joint Rayleigh pdf constitutes a special case of the
proposed distribution. It is important to mention that both pdfs,
namely that of [8] as well as the one to be presented here, are
legitimate joint Weibull pdfs, the validity of which in wireless
communications can only be attested with practical field exper-
imentation. There are, however, some important attributes con-
cerning the joint Weibull pdf as proposed here: it is simple; it is
fully characterized in terms of physical fading parameters; it is
consistent with the other more general joint pdfs used in wire-
less communications, such as Rice [10], [11] and Nakagami-m
[12], since it also encompasses the joint Rayleigh pdf as a par-
ticular case.

III. PRELIMINARIES

In accordance with [7], the resulting signal envelope of a
Weibull process is a nonlinear process obtained not simply as
the modulus of the sum of the multipath components, but as this
modulus to a certain given exponent. Suppose that such a non-
linearity is in the form of a power parameter so that the
resulting envelope is given by

(1)

1In [8], the dependence parameter and the correlation coefficient were named
� and �, respectively.
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where and are mutually independent Gaussian processes,
with and , and

is the expectation operator. From (1), it can be shown that
the pdf of is found as

(2)

which is Weibull. The parameter , as defined here, is the -root
mean value of , i.e., . For a normalized enve-
lope , the pdf of P is obtained as

(3)

The probability distribution function of a Weibull variate
can be found in a closed-form formula. In particular,

for the envelope is given by

(4)

Equivalently

(5)

The th moment is obtained as

(6)

where is the gamma function. Of
course, . From (1), it can be seen that

(7)

where is the Rayleigh envelope. The joint statistics can now
be obtained by capitalizing on some results already available in
the literature for the Rayleigh distribution. More specifically, we
use the relation given in (7) between the Weibull and Rayleigh
variates. Let and be two Rayleigh variates whose
marginal statistics are respectively described by the parameters

and ; and be two Weibull
variates whose marginal statistics are respectively described by
the parameters and ; and be a correlation
parameter. (We postpone the discussion about this parameter to
a later subsection.)

IV. JOINT PROBABILITY DENSITY FUNCTION

The joint pdf of two Rayleigh variates
with marginal statistics as described previously is given by (122)
of [12] (or, equivalently, by (3.7-13) of [11]). By means of (7),

so that and , we find that and
. Now with (122) of [12] and the relations just given,

the joint pdf of two Weibull variates is found as
, in which is the Ja-

cobian of the transformation. Following the standard statistical
procedure of transformation of variates and after some algebraic
manipulations, the joint pdf of the Weibull vari-
ates and is found as

(8)

where is the modified Bessel function of the first kind
and order ([14], 9.6.18). For , then (8) reduces
to (122) of [12], i.e., for this condition, (8) yields the joint dis-
tribution of two Rayleigh envelopes, as desired.

V. GENERALIZED JOINT MOMENTS

The joint moments of two normalized
Weibull variates may be found from (8) by using
the standard procedure in probability theory (i.e.,

). Therefore,
after several algebraic manipulations

(9)

where is the Gauss hypergeometric function ([14],
15.1.1). Of course, . For

, then (9) reduces to (137) of [12] with , i.e., for this con-
dition, (9) yields the generalized joint moments of two Rayleigh
envelopes.

VI. GENERALIZED CORRELATION COEFFICIENT

Define a generalized correlation coefficient of two
Weibull variates such that

(10)

where and are the variance and covariance opera-
tors, respectively. By means of (6) and (9), and after some alge-
braic manipulations. (Please see (11) at the bottom of the page.)
For , then (11) yields the generalized correlation
coefficient of two Rayleigh envelopes. For and

, then (11) reduces to (139) of [12] with .

(11)
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VII. SOME INSIGHT INTO THE CORRELATION COEFFICIENT

Let denote the generalized correlation coefficient of the
Rayleigh distribution such that

(12)

Then, using (10), (12), and the relation as in (7) it can be
seen that . Interestingly, from (11), we find that

. This is a remarkable result, which shows that the
correlation coefficient equals the correlation coefficient of
the Weibull distribution for and , and this is
identical to the correlation coefficient of two squared Rayleigh
envelopes. Therefore

(13)

Note the that the Weibull correlation coefficient can
now be expressed in terms of the Rayleigh correlation
coefficient . We then write the Rayleigh processes in
terms of the Gaussian in-phase and quadrature processes as

, in which are zero-mean
Gaussian in-phase and quadrature components. For the
Rayleigh process

. For any two Gaussian processes ,
for which , then and

. Using these
in (13) and after algebraic manipulations

(14)

Any fading model in which the above statistics (14) are known
can be used in order to obtain . Therefore, the Weibull
correlation coefficient can be expressed in terms of joint
statistics of the in-phase and quadrature components of the
Rayleigh process. In particular, for the Jakes model [13], we
use (1.5-11), (1.5-14), and (1.5-15) of [13] such that (Please see
(15) at the bottom of the page.) where: is the horizontal
directivity pattern of the receiving antenna; is a variate
denoting the angle of the incident power; is the maximum
Doppler shift; is the time difference between the two fading
signals; is the frequency difference between these signals;
and is a variate denoting the time delay. For an isotropic
scattering (i.e., uniform distribution in angle of the incident
power), omni-directional receiving antenna , and
exponentially distributed time delay [13]

(16)

in which is the delay spread.

Fig. 1. The correlation coefficient for the Weibull envelopes as a function of
!� .

Fig. 2. The correlation coefficient for the Weibull envelopes as a function of
�!t.

VIII. SAMPLE EXAMPLES

This section illustrates how the correlation coefficient of the
Weibull envelopes varies for the isotropic condition. In this case,
(16) is used into (11) and . Fig. 1 depicts as a
function of for different values of the Weibull parameters

and . Fig. 2 shows as a function of
for different values of the Weibull parameters

and . Note, in Figs. 1 and 2, that for ,
a large variation of the Weibull parameter, namely from

to , implies a small variation in the
curves. In fact, it has been observed that the curve for which

is practically coincident with that for which
. Therefore, we conclude that the correlation co-

efficient does not vary much for . The same does

(15)
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not hold for . In fact, for the corre-
lation coefficient tends to an impulse at the origin. We note that
the condition corresponds to the Rayleigh case.
Therefore, the correlation properties for the Weibull fading en-
vironment are roughly those of the Rayleigh ones in case the
Weibull parameter is above 1. Conversely, the correlation prop-
erties differ substantially from the Rayleigh ones in case the
Weibull parameter is below 1.

IX. CONCLUSION

Simple closed-form formulas for the joint statistics of two
correlated Weibull variates are derived. These statistics are
written in terms of well-known fading physical parameters. It
has been found that the correlation properties for the Weibull
fading environment are almost the same as those of the Rayleigh
ones in case the Weibull parameter is above 1. On the other
hand, they differ substantially from the Rayleigh ones in case
the Weibull parameter is below 1.
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